鉄人の一通入魂

 中学受験鉄人会が毎週お届けしておりますメールマガジン
『 鉄人の一通入魂』のバックナンバーです。

2017.6.13配信
絶対に役立つ中学受験専門プロ家庭教師からの必勝アドバイス!
四谷大塚・早稲田アカデミー4・5年生 予習シリーズ算数上 第17回攻略ポイント

<算数 5年上 第17回 >

第17回は『容器と水量(1)』です。水量と水の深さ、水量の変化とグラフ、水深の変化とグラフを学習します。直方体の容器に入っている水の体積は、直方体の底面積に(高さとなる)水の深さをかけて求められます。よって、水の体積=底面積×深さ、を基本に問題を解きます。また、容積とは、容器の体積をいい、容器いっぱいに入った水の体積のことです。

【攻略ポイント1】

「必修例題1」は、水量と水の深さの問題です。

  1. 直方体の容器の底面積は18×20=360平方cmです。この容器に15cmの深さまで水を入れましたから、360×15=5400より、水の体積は、5400立方cmです。リットル単位にすると、1L=1000立方cmですから、答えは5.4Lです。
  2. 1dL=100立方cmですから、12dL=1200立方cmです。1辺が20cmの立方体の底面積は400平方cmで、この容器に□cmの深さまで水を入れると1200立方cmになるのですから、400×□=1200という関係が成り立ちます。逆算して、□=1200÷400=3より、水の深さは3cmです。
  3. 2.4L=2400立方cmです。底面積を□平方cmとして、15cmの深さまで水を入れたときの水の体積が2400立方cmになりますから、□×15=2400という関係が成り立ちます。逆算して、□=2400÷15=160より、底面積は160平方cmです。

水量の問題では、上記のように単位換算が必要になるケースがとても多いです。立方cm、dL、L、立方mの関係をしっかり覚えておくようにしましょう。

【攻略ポイント2】

「必修例題2」は、水を入れた部分の、容器の各辺の長さを読み取ることが重要な問題です。

  1. 水の入っている部分は、たてが20cm、横が45cm、深さが14cmです。よって、20×45×14=12600より、水の体積は12600立方cmで、12.6Lです。
  2. 面ABCDが床につくように容器を立てた場合の状況は、予習シリーズ156ページの解き方にある図の通りです。たて20cm、横30cm、高さ18cmの部分の体積は、20×30×18=10800立方cmです。水は12600立方cmですから、残りの(12600−10800=)1800立方cmは、この部分より上に入ります。上の部分の底面は、たて20cm、横15cmとなり、底面積は20×15=300平方cmですので、深さを□cmとすると、この部分で300×□=1800という関係が成り立ちます。逆算して、□=1800÷300=6より、6cmまで水が入りますから、面ABCDからは、18+6=24より、24cmの深さになります。
【攻略ポイント3】

グラフの問題では、前回の速さのグラフで述べましたように、グラフの斜めの線の部分を斜辺とする直角三角形を考えます。この直角三角形で、たて線は水量または深さを、横線はその水量または深さになる時間を表します。

「必修例題3」は、水を入れるA管と、水を出すB管のついた水そうの問題です。グラフの右上がりの部分はA管だけを使って水が増えていく状態を、右下がりの部分はA管とB管を使って水が減っていく状態を表しています。

  1. 右上がりの直角三角形を考えますと、横線は(0から40までの)40分で、たて線は(400から1200までの)800Lと増えています。よって、800÷40=20より、A管からは1分間に20Lの水が入ることがわかります。
  2. 右下がりの直角三角形で、横線は(40から60までの)20分で、たて線は(1200から400までの)800Lと減っています。よって、800÷20=40より、A管とB管を使って、1分間に40L減っていることがわかります。ですから、20+40=60より、B管からは1分間に60Lの水が流れ出ることがわかります。40Lを答えとしないよう、注意しましょう。
  3. A管とB管を使うと、1分間に40Lずつ減っていきます。60分後の400Lをなくすには、400÷40=10より、あと10分必要です。よって、60+10=70より、水そうの中の水がなくなるのは、A管を開いてから70分後です。

「必修例題4」は、階段状の容器に水を入れる問題です。この場合、底面積が変化することに注意して解いていきます。  (図1)より、容器の容積がわかるのは、水そうの階段になっている上の部分です。この部分の体積は、80×100×90=720000立方cmで、720Lです。毎分24Lの割合で水を入れますから、720÷24=30より、グラフのアから36(分)までの時間は30分とわかります。よって、36−30=6より、アにあてはまる数は6です。
 アが6ですから、水そうの階段になっている下の部分の体積は、24L×6=144Lで、144000立方cmとなります。この部分の深さを□cmとすると、80×60×□=144000より、□=144000÷(80×60)=30ですから、深さを表すイにあてはまる数は、30です。
 ウは、容器全体の高さ(深さ)を表していますから、30+90=120より、ウにあてはまる数は、120です。

「必修例題5」は、仕切り板で分けられた容器に水を入れる問題です。グラフの読み取りが大切になります。グラフと水そうに入る水の入り方については、予習シリーズ159ページの解き方にある図を参照してください。仕切り板が入るタイプの問題では、断面図をかいて考えることが有効になります。

  1. 毎分9L=9000立方cmの割合で、水そうのAの部分に水を入れ始めました。よって、グラフのはじめの部分は、Aに水を入れ始めて、8分後に仕切り板の高さまで水が入ったことを表しています。(図1)より、Aの部分の底面積は、60×40=2400平方cmですから、仕切り板の高さを□cmとすると、2400×□=9000×8より、□=9000×8÷2400=30ですから、仕切り板の高さは、30cmです。
  2. グラフの横軸に平行な部分は、水そうのBの部分に水が入っていることを表しています。20−8=12分より、Bの部分の仕切り板の高さまでの体積は、9000×12=108000立方cmとわかります。よって、60×x×30=108000より、108000÷(60×30)=60ですので、xは60cmです。
  3. この水そうの容積は、60×(40+60)×50=3000000立方cm=300Lですから、300÷9=33・1/3より、33・1/3分となります。1/3分=60秒÷3=20秒です。よって、水があふれ出すのは、水を入れ始めてから、33分20秒後です。

<算数 4年上 第17回 >

第17回は『つるかめ算(1)』です。中学受験算数の問題の中でも代表的な問題といわれるものです。予習シリーズ129ページから130ページにある説明をよく読んでください。つるかめ算のイメージをつかみ、解き方の仕組みを理解しましょう。また、つるかめ算の変化した弁償(べんしょう)算も学習します。

【攻略ポイント1】

「必修例題1」は、つるかめ算の基本の問題です。
1本60円のえんぴつと1本90円のボールペンを合わせて12本買って、代金の合計が840円です。えんぴつの本数を求めますが、求めるえんぴつの本数を0本としてスタートします。つまり、ボールペンを12本買ったことにします。90×12=1080円で、1080−840=240円より、実際の代金840円より、240円多いことになっています。ここで、ボールペン1本とえんぴつ1本をとりかえることを考えますと、代金は90−60=30円少なくなります。代金を240円少なくするためには、240÷30=8より、8本とりかえればよいことになります。つまり、えんぴつは、8本買ったことになります。

「必修例題2」も、つるかめ算の基本の問題です。合計が表されていませんが、問題を最後まで読むと、すぐにわかる問題です。
 50円切手と80円切手を合わせて15まい買い、代金は、1000−160=840円です。80円切手の買ったまい数を求めますので、50円切手を15まい買ったことからスタートします。
840−50×15=90より、実際との差は90円少ないです。50円切手と80円切手を1まいとりかえると、80−50=30円多くなります。よって、90÷30=3より、80円切手は3まい買いました。

【攻略ポイント2】

弁償算を学習します。つるかめ算では、1つとりかえるごとに差が変わってきましたが、弁償算では、1つとりかえるごとに和がかわってきます。
 「必修例題3」は、弁償算の問題です。おはじきを20個持っている太郎君が、1回勝つとおはじきが5個増え、1回負けるとおはじきが1個減るゲームをします。

  1. (1) 10回のゲームのうち、7回勝ったので、負けは3回です。勝ちが7回で、5×7=35個増え、負けが3回で、1×3=3個減ります。よって、20+35−3=52より、おはじきは52個になりました。
  2. (2) ゲームを20回行います。すべて勝ったとすると、おはじきは、20+5×20=120個になりますが、実際は78個です。120−78=42個少なかったのですが、これは、1回勝ったときの5個が増えず、それに加えて1回負けたことによって1個が減りますので、合わせて、5+1=6個減ったためです。42個少なかったのですから、42÷6=7回負けたことになります。よって、20−7=13より、13回勝ちました。

われわれ中学受験鉄人会のプロ家庭教師は、常に100%合格を胸に日々研鑽しております。ぜひ、大切なお子さんの合格の為にプロ家庭教師をご指名ください。

パパとママの勉強部屋
中学受験の模試について
中学受験塾の分析とアドバイス
必勝アドバイス
夏休み短期始動コース
SAPIX 4年生組分けテスト予想問題 SAPIX 5年生組分けテスト予想問題 SAPIX 5年生組分けテスト/算数攻略ポイント
中学受験鉄人会 資料請求
中学受験鉄人会 公式Facebook はじめました。
中学受験鉄人会への喜びの声 学校別攻略法:現役スーパープロ家庭教師による中学校別攻略法 中学受験鉄人会家庭教師募集

twinavi

Twitterの総合ナビゲーションサイト
»詳しくはこちらをクリック